The intuition is that a monad is a consistent choice of <u>formal</u> expressions together with ways to evaluate them.

A formal expression is an arrangement of formal variables that may not have a result but obeys manipulation rules. The construction of formal expression is *functorial* because we can always apply a function to the formal variables¹.

The monad structure then comes out naturally because we can always

- form the <u>trivial</u> expression out of a single formal variable (the monad unit)
- simplify a <u>composite</u> expression (the monad multiplication)

Now we want to equip the monad with a way to <u>evaluate</u> formal expressions that is to substitute values into the formal variables and get a value back. For this we need an algebra

Definition 0.1. Consider a monad (T, η, μ) in a category C a **monad algebra**² is an algebra $(c, \epsilon : Tc \to c)$ that is <u>compatible</u> with the monad structure, that is the diagrams

$$c \xrightarrow{\eta_c} Tc \qquad TTc \xrightarrow{\mu_c} Tc \qquad \\ \downarrow_{c} \qquad \downarrow_{\epsilon} \qquad Tc \qquad \\ \downarrow_{c} \qquad C \qquad Tc \xrightarrow{\mu_c} C \qquad \\ Te \downarrow \qquad \downarrow_{\epsilon} \qquad \\ Tc \xrightarrow{\epsilon} c \qquad \\ Tc \xrightarrow{tc} c \qquad \\ Tc \xrightarrow{tc}$$

commute.

Note that when dealing with an algebra (which has a specific carrier object) we always work with the *components* of the natural transformations η, μ .

Proposition 0.1. Monad algebras for a monad (T, η, μ) on a category C form the **Eilenberg-Moore** category C^T .

November 16, 2023

¹for example formal sums of variables: $x \in X$, $FX = x_1 + \cdots + x_n$ we make F functorial with $Ff(x_1 + \cdots + x_n) = f(x_1) + \cdots + f(x_n)$

²Eilenberg-Moore algebra

Section 0

Definition 0.2. Consider a monad (T, η, μ) on a category \mathcal{C} and an object $c \in \mathcal{C}$ then $(Tc, \mu_c)^3$ is a **free monad algebra**.

 (Tc, μ_c) is a monad algebra because

• the first compatibility diagram

$$\begin{array}{ccc} Tc & \xrightarrow{\eta} & TTc \\ & & \downarrow^{\mu} \\ & & Tc \end{array}$$

is just the left unitality

• the second compatibility diagram

$$\begin{array}{ccc} TTTc & \xrightarrow{\mu_{T_c}} & TTc \\ T\mu_c & & \downarrow \mu_c \\ TTc & \xrightarrow{\mu_c} & Tc \end{array}$$

is just the associativity

See [1] Ch.5.2.

[1] P. Perrone, Notes on Category Theory with Examples from Basic Mathematics, (2019).

November 16, 2023

³note that $\mu_c: T(Tc) \to (Tc)$ is an evaluation map