The intuition is that a monad is a consistent way to extend spaces to include <u>generalized</u> elements and functions.

A generalized element can be the result of some operation that might

- fail (Maybe)
- produce multiple outcomes (List)
- produce multiple outcomes with different probabilities
- produce some outcome together with side effects

in all these cases we might replace morphisms $f:a \rightarrow b$ with $f:a \rightarrow Tb$

Definition 0.1. Let (T, η, μ) be a monad on a category C, a **Kleisli morphism** $a \rightarrow b$ of T is a morphism $f : a \rightarrow Tb$ in C

Taking the naturality square of η

$$\begin{array}{ccc} a & \xrightarrow{\eta_a} & Ta \\ f \downarrow & & \downarrow^{Tf} \\ b & \xrightarrow{\eta_b} & Tb \end{array}$$

note that any $f: a \to b$ uniquely defines a map $\eta_b \circ f: a \to Tb$. This is different from *extending* existing morphisms to T-, we are allowing <u>more general</u> morphisms that may give values in Tb that may not come from b alone.

Definition 0.2. Let (T, η, μ) be a monad on a category C, let $f : a \to Tb$ and $g : b \to Tc$, the **Kleisli composition** $g \circ_T f : a \to Tc$ is given by

$$a \xrightarrow{f} Tb \xrightarrow{Tg} TTc \xrightarrow{\mu_c} Tc$$

$$g \circ_T f = \mu_c \circ Tg \circ f$$

Definition 0.3. Let (T, η, μ) be a monad over a category C, the **Kleisli category** C_T has

November 16, 2023

Page 1 of 2

- the same objects of $\boldsymbol{\mathcal{C}}$
- a Kleisli morphisms $f:a \rightarrow b$ for any $f:a \rightarrow b$ in ${\cal C}$
- identity morphisms $\mathbf{1}_a = \eta_a : a \to Ta$
- the Kleisli composition

See [1] Ch.5.1.

[1] P. Perrone, Notes on Category Theory with Examples from Basic Mathematics, (2019).