Definition 0.1. A comonad on a category \mathcal{C} is a triple (W, ϵ, δ)

- $W: \mathcal{C} \rightarrow \mathcal{C}$ (an endo-functor)
- $\epsilon: W \Rightarrow 1_{\mathcal{C}}$ (the extract natural transformation)
- $\delta: W \Rightarrow W^{2}$ (the duplicate natural transformation)
such that

1. the diagram

commutes, that is

$$
\left(\delta \star \mathbf{1}_{W}\right) \circ \delta=\left(\mathbf{1}_{W} \star \delta\right) \circ \delta
$$

2. the diagram

commutes.
a comonad is just a comonoid in the category of endofunctors

Example 0.1. In Haskell a comonad is defined as
November 16, 2023

```
class (Functor w) => Comonad where
    duplicate :: w a -> w (w a) -- co-join
    extract :: w a -> a -- co-return
```

we can define the extend and bird operators as

```
-- extend (co-bind)
extend :: (w a -> b) -> w a -> w b
extend \(f=(f m a p ~ f)\). duplicate
-- bird (co-fish)
(=>=) :: (w a -> b) -> (w b -> c) -> (w a -> c)
\(\mathrm{f}=>=\mathrm{g}=\mathrm{g}\). (extend f)
```

and =>= is a co-Kleisli arrow.
Example 0.2. In Haskell the Stream functor is a comonad

```
data Stream a = Cons a (Stream a)
extract :: w a -> a
extract (Cons a _) = a
duplicate :: w a -> w (w a)
duplicate Cons a as = Cons (Stream a as) (duplicate as)
```

Example 0.3. Take the moving average over a stream

```
sumN :: Num a => Int n -> Stream a -> a
sumN n (Cons a as) = if n==0
                        then 0
                        else a + (sumN (n-1) as)
avgN :: Fractional a => Int n -> Stream a -> a
avgN n as = (sumN n as) / (fromIntegral n)
avgN is local, it only looks to n neighbors. If we partially apply
avgN it becomes a co-Kleisli arrow then we can use extend
extend (avgN n) as
which replaces every element of the stream with its moving aver-
age.
```

See [1] Ch. 23 and also

- Category Theory II 7.1: Comonads - YouTube
- Category Theory II 7.2: Comonads Categorically and Examples - YouTube
[1] B. Milewski, Category Theory for Programmers (2019).

