Definition 0.1. Given a category C its **opposite category** C^{op} is obtained by reversing its morphisms:

- the objects of \mathcal{C}^{op} are the same of \mathcal{C}
- if $f:a \to b$ is a morphism in C then there is a morphism $\bar{f}:b \to a$ in C^{op}
- if $\mathbf{1}_a$ is the identity of a in \mathcal{C} then $\overline{\mathbf{1}}_a$ is the identity in \mathcal{C}^{op}
- if $g \circ f : a \to c$ is the composite of $f : a \to b$ and $g : b \to c$ then $\overline{g \circ f} : c \to a$ is the composite of $\overline{f} : b \to c$ and $\overline{g} : c \to b$ thus

$$\overline{g \circ f} = \overline{f} \circ \overline{g}$$

a statement in a category ${\cal C}$ is true if and only if the dual statement is true in ${\cal C}^{\it op}$

See [1] Ch.1.2 and [2] Ch.1.1.7.

[1] E. Riehl, Category Theory in Context (Dover, 2015).
[2] P. Perrone, Notes on Category Theory with Examples from Basic Mathematics, (2019).