Contents

The $\ensuremath{\textbf{product}}$ of two categories is just the category of $\underline{\mbox{pairs}}$ of objects and morphisms

Definition 0.1. Given categories ${\boldsymbol{\mathcal{C}}}$ and ${\boldsymbol{\mathcal{D}}}$, the **product category** ${\boldsymbol{\mathcal{C}}}\times{\boldsymbol{\mathcal{D}}}$ has

- as objects the pairs (c,d) where $c \in \mathcal{C}$, $d \in \mathcal{D}$
- as morphisms tha pairs $(f,g):(c,d) \to (c',d')$ where

- $f: c \to c'$ - $g: d \to d'$

- as identity morphisms the pairs $\mathbf{1}_{(c,d)} = (\mathbf{1}_c, \mathbf{1}_d)$
- composition is defined as:

$$(f',g')\circ(f,g)=(f'\circ f,g'\circ g)$$