Contents

The product of two categories is just the category of pairs of objects and morphisms

Definition 0.1. Given categories \mathcal{C} and \mathcal{D}, the product category $\mathcal{C} \times \mathcal{D}$ has

- as objects the pairs (c, d) where $c \in \mathcal{C}, d \in \mathcal{D}$
- as morphisms tha pairs $(f, g):(c, d) \rightarrow\left(c^{\prime}, d^{\prime}\right)$ where
- $f: c \rightarrow c^{\prime}$
- $g: d \rightarrow d^{\prime}$
- as identity morphisms the pairs $\mathbf{1}_{(c, d)}=\left(\mathbf{1}_{c}, \mathbf{1}_{d}\right)$
- composition is defined as:

$$
\left(f^{\prime}, g^{\prime}\right) \circ(f, g)=\left(f^{\prime} \circ f, g^{\prime} \circ g\right)
$$

