Consider a <u>weaker</u> notion of equivalence of categories, instead of taking full isomorphisms take only *half*

Definition 0.1. (Adjunction I) An **adjunction** $L \dashv R$ consists of a pair of functors $R : \mathcal{C} \to \mathcal{D}, L : \mathcal{D} \to \mathcal{C}$ together with a natural isomorphism¹ between the hom-functors

$$\mathcal{C}(Ld,c) \cong \mathcal{D}(d,Rc)$$

for any $c \in \mathcal{C}$ and $d \in \mathcal{D}$.

The corresponding morphisms

$$Ld \xrightarrow{f^{\sharp}} c \qquad \qquad \leftrightarrow \qquad \qquad d \xrightarrow{f^{\flat}} Rc$$

through the bijection are **adjoint** of each other.

The intuition is that we can get the all information about $c \in \mathcal{C}$ by first mapping it with $R : \mathcal{C} \to \mathcal{D}$ and then analysing it in category \mathcal{D} (from any $d \in \mathcal{D}$), the natural isomorphism guarantees that this information is the same as that extracted directly in \mathcal{C} (from any $Ld \in \mathcal{C}$).

See [1] Ch.4, [2] Ch.4, [3] Ch.18, [4] Ch.IV. See also

- Category Theory II 5.2: Adjunctions YouTube
- Adjunctions (examples)

 $^{^1{\}rm that}$ is an isomorphism between the hom-sets that is also a natural transformation between hom-functors when varying both c and d

1 Universal Property & the Unit

Taking the adjunction $L \dashv R$ and fixing $d \in \mathcal{D}$ we have the natural isomorphism between hom-functors

$$\mathcal{C}(Ld,-)\cong \mathcal{D}(d,R-)$$

thus the hom-functor $\mathcal{D}(d, R-) : \mathcal{C} \to \mathcal{S}et$ together with $Ld \in \mathcal{C}$ form a universal property.

As usual specializing the naturality square $(f^{\sharp}: Ld \rightarrow c)$

$$\begin{array}{ccc} \mathcal{C}(Ld,Ld) & \xleftarrow{\alpha_{Ld}} \mathcal{D}(d,RLd) \\ f^{\sharp} \circ - & & \downarrow Rf^{\sharp} \circ - \\ \mathcal{C}(Ld,c) & \xleftarrow{\alpha_c} \mathcal{D}(d,Rc) \end{array}$$

and evaluating element-wise $(f^{\flat} = \alpha_c f^{\sharp})$

we have the existence and uniqueness condition: for any $f^{\flat}: d \to Rc$ there exists a unique $f^{\sharp}: Ld \to c$ such that $Rf^{\sharp} \circ \eta_d = f^{\flat}$

Note that the map $\eta_d : d \to RLd$ is the <u>adjoint</u> of $\mathbf{1}_{Ld}$.

Looking at the full diagram

Page 2 of 8

we see that the identity diagram for $\mathbf{1}_{Ld}$ on the left induces commuting diagrams on the right, this can be made more precise in the following

Lemma 1.1. Consider the adjunction $L \dashv R$ and the diagrams

$Ld \xrightarrow{Lh} Ld'$	$d \xrightarrow{h} d'$
f^{\sharp} g^{\sharp}	$f^{\flat} \downarrow \qquad \qquad \downarrow g^{\flat}$
$c \xrightarrow{k} c'$	$Rc \xrightarrow{Rk} Rc'$

the diagram on the left commutes if and only if the diagram on the right commutes.²

Proof. The naturality square for fixed $c' \in \mathcal{C}$ $(h : d \rightarrow d')$ is

$$\begin{array}{ccc} \mathcal{C}(Ld',c') & \stackrel{\flat}{\longrightarrow} \mathcal{D}(d',Rc') \\ \xrightarrow{-\circ Lh} & & \downarrow -\circ h \\ \mathcal{C}(Ld,c') & \xrightarrow{\flat} \mathcal{D}(d,Rc') \\ & & (q^{\sharp} \circ Lh)^{\flat} = q^{\flat} \circ h \end{array}$$

The naturality square for fixed $d \in \mathcal{D}$ ($k : c \rightarrow c'$) is

$$\begin{split} \mathcal{C}(Ld,c) & \stackrel{\flat}{\longrightarrow} \mathcal{D}(d,Rc) \\ & \stackrel{k\circ-}{\downarrow} & \downarrow^{Rk\circ-} \\ \mathcal{C}(Ld,c') & \stackrel{\flat}{\longrightarrow} \mathcal{D}(d,Rc') \\ & (k\circ f^{\sharp})^{\flat} = Rk\circ f^{\flat} \end{split}$$

Suppose the left diagram commutes

$$g^{\sharp} \circ Lh = k \circ f^{\sharp}$$

substituting into naturality

November 16, 2023

Page 3 of 8

 $^{^2 {\}rm the\ converse\ is\ also\ true:\ equivalence\ between\ commuting\ diagrams\ on\ both\ sides\ implies\ the\ naturelity\ of\ the\ bijections.$

$$g^{\flat} \circ h = Rk \circ f^{\flat}$$

thus the right diagram also commutes (the converse is similar). \square

Proposition 1.1. The maps $\eta_d : d \to RLd$ form a natural transformation

$$\eta: \mathbf{1}_{\mathcal{D}} \Rightarrow R \circ L$$

of endofunctors $\mathcal{D} \to \mathcal{D}$.

Proof. The naturality square for η ($f : d \rightarrow d'$) is

$$\begin{array}{ccc} d & \xrightarrow{\eta_d} & RLd \\ f \downarrow & & \downarrow RLf \\ d' & \xrightarrow{\eta_{d'}} & RLd' \end{array}$$

using the previous lemma this diagram commutes iff the corresponding diagram in $\boldsymbol{\mathcal{C}}$

$$\begin{array}{ccc} Ld & \stackrel{\mathbf{1}_d}{\longrightarrow} & Ld \\ Lf & & \downarrow Lf \\ Ld' & \stackrel{\mathbf{1}_d'}{\longrightarrow} & Ld' \end{array}$$

commutes, which is clearly the case. $\hfill\square$

Definition 1.1. The natural transformation

$$\eta: \mathbf{1}_{\mathcal{D}} \Rightarrow R \circ L$$

is called the **unit** of the adjunction $L \dashv R$.

2 Universal Property & the Counit

Taking the adjunction $L \dashv R$ and fixing $c \in C$ we have the natural isomorphism between hom-functors

$$\mathcal{C}(L-,c) \cong \mathcal{D}(-,Rc)$$

thus the hom-functor $\mathcal{C}(L-,c): \mathcal{D} \to \mathcal{S}et$ together with $Rc \in \mathcal{D}$ form a universal property.

As usual specializing the naturality square ($f^{\flat}: d \rightarrow Rc$)

$$\begin{array}{c} \boldsymbol{\mathcal{D}}(Rc,Rc) \xrightarrow{\alpha_{Rc}} \boldsymbol{\mathcal{C}}(LRc,c) \\ \hline & -\circ f^{\flat} \downarrow & \downarrow -\circ Lf^{\flat} \\ \boldsymbol{\mathcal{D}}(d,Rc) \xrightarrow{\alpha_d} \boldsymbol{\mathcal{C}}(Ld,c) \end{array}$$

and evaluating element-wise $(f^{\sharp} = \alpha_c f^{\flat})$

$$\begin{array}{ccc} \mathbf{1}_{Rc} & \stackrel{\alpha_{Rc}}{\longrightarrow} & \epsilon_c = \alpha_{Rc} \mathbf{1}_{Rc} \\ \downarrow & & \downarrow \\ f^{\flat} & \stackrel{\alpha_d}{\longrightarrow} & f^{\sharp} = \epsilon_c \circ L f^{\flat} \end{array}$$

we have the existence and uniqueness condition: for any $f^{\sharp}: Ld \rightarrow c$ there exists a unique $f^{\flat}: d \rightarrow Rc$ such that $f^{\sharp} = \epsilon_c \circ Lf^{\flat}$

$$\begin{array}{ccc} Ld & & d \\ Lf^{\flat} \downarrow & & \downarrow f^{\flat} \\ LRc \xrightarrow{f^{\sharp}} c & & Rc \end{array}$$

Note that the map $\epsilon_c : LRc \to c$ is the adjoint of $\mathbf{1}_{Rc}$.

The full diagram is

November 16, 2023

Page 5 of 8

Section 2

Proposition 2.1. The maps $\epsilon_c : c \to LRc$ form a natural transformation

$$\epsilon: L \circ R \Rightarrow \mathbf{1}_{\mathcal{C}}$$

of endofunctors $\mathcal{C} \to \mathcal{C}$.

Proof. The naturality square for ϵ ($f : c \rightarrow c'$) is

$$\begin{array}{ccc} LRc & \xrightarrow{\epsilon_c} & c \\ LRf & & \downarrow f \\ LRc' & \xrightarrow{\epsilon_{c'}} & c' \end{array}$$

using the previous lemma this diagram commutes iff the corresponding diagram in $\boldsymbol{\mathcal{D}}$

$$\begin{array}{ccc} Rc & \xrightarrow{\mathbf{1}_{Rc}} & Rc \\ Rf & & \downarrow Rf \\ Rc' & \xrightarrow{\mathbf{1}_{Rc'}} & Rc' \end{array}$$

commutes, which is clearly the case. $\hfill\square$

Definition 2.1. The natural transformation

 $\epsilon: L \circ R \Rightarrow \mathbf{1}_{\mathcal{C}}$

is called the **counit** of the adjunction $L \dashv R$.

3 Alternative Definition

An alternative definition of the adjunction is

Definition 3.1. (Adjunction II) An **adjunction** $L \dashv R$ consists of a pair of functors $R : \mathcal{C} \to \mathcal{D}, L : \mathcal{D} \to \mathcal{C}$ together with two natural transformations

- $\eta : \mathbf{1}_{\mathcal{D}} \Rightarrow R \circ L$ (the **unit**)
- $\epsilon: L \circ R \Rightarrow \mathbf{1}_{\mathcal{C}}$ (the **counit**)

such that

commute in the functor category $[\mathcal{C}, \mathcal{D}]$.

Note that $R \circ L$ and $L \circ R$ are endo-functors, they are like *containers*.

The naturality square for unit $(f : x \to y \text{ in } \mathcal{D})$ is³

$$\begin{array}{cccc} x & x & \xrightarrow{\eta_x} & (R \circ L)x \\ f & & f & & \downarrow (R \circ L)f \\ y & & y & \xrightarrow{\eta_y} & (R \circ L)y \end{array}$$

 $\eta_x \text{ <u>picks</u>}$ a particular element inside $(R \circ L)x$.

The naturality square for counit $(f : x \rightarrow y \text{ in } \mathcal{C})$ is

$$\begin{array}{cccc} x & (L \circ R)x & \stackrel{\epsilon_x}{\longrightarrow} x \\ f & (L \circ R)f & f \\ y & (L \circ R)y & \stackrel{\epsilon_y}{\longrightarrow} y \end{array}$$

 $\epsilon_x \text{ <u>extracts</u>}$ a particular element from $(L \circ R)x$.

³note that $\mathbf{1}_{\mathcal{D}}x = x, \mathbf{1}_{\mathcal{D}}f = f$

Proposition 3.1. The two definitions of adjunction are equivalent.

Proof. Consider the isomorphism in the first definition and pick c = Ld then

$$\mathcal{C}(Ld, Ld) \cong \mathcal{D}(d, (R \circ L)d)$$

the identity $\mathbf{1}_{Ld} \in \mathcal{C}(Ld, Ld)$ picks a mapping (the unit)

$$\eta_d: d \to (R \circ L)d$$

which can be seen to be the component of a natural transformation from the naturality of the isomorphism.

Taking d = Rc we get

$$\mathcal{C}((L \circ R)c, c) \cong \mathcal{D}(Rc, Rc)$$

the identity $\mathbf{1}_{Rc}$ picks a mapping (the counit)

 $\epsilon_c: (L \circ R)c \to c$

which is natural.

In the other direction take

- $\eta_d: d \to (R \circ L)d$
- $\epsilon_c : (L \circ R)c \to c$

and use R and L functors on morphisms. \Box

[1] E. Riehl, Category Theory in Context (Dover, 2015).

[2] P. Perrone, Notes on Category Theory with Examples from Basic Mathematics, (2019).

[3] B. Milewski, *Category Theory for Programmers* (2019).
[4] S. M. Lane, *Categories for the Working Mathematician* (Springer New York, 1971).