Consider a weaker notion of equivalence of categories, instead of taking full isomorphisms take only half

Definition 0.1. (Adjunction I) An adjunction $L \dashv R$ consists of a pair of functors $R: \mathcal{C} \rightarrow \mathcal{D}, L: \mathcal{D} \rightarrow \mathcal{C}$ together with a natural isomorphism ${ }^{11}$ between the hom-functors

$$
\mathcal{C}(L d, c) \cong \mathcal{D}(d, R c)
$$

for any $c \in \mathcal{C}$ and $d \in \mathcal{D}$.
The corresponding morphisms

$$
L d \xrightarrow{f^{\sharp}} c \quad \leftrightarrow \quad d \xrightarrow{f^{b}} R c
$$

through the bijection are adjoint of each other.
The intuition is that we can get the all information about $c \in \mathcal{C}$ by first mapping it with $R: \mathcal{C} \rightarrow \mathcal{D}$ and then analysing it in category \mathcal{D} (from any $d \in \mathcal{D}$), the natural isomorphism guarantees that this information is the same as that extracted directly in \mathcal{C} (from any $L d \in \mathcal{C}$).
See [1] Ch.4, [2] Ch.4, [3] Ch.18, [4] Ch.IV.
See also

- Category Theory II 5.2: Adjunctions - YouTube
- Adjunctions (examples)

[^0]
1 Universal Property \& the Unit

Taking the adjunction $L \dashv R$ and fixing $d \in \mathcal{D}$ we have the natural isomorphism between hom-functors

$$
\mathcal{C}(L d,-) \cong \mathcal{D}(d, R-)
$$

thus the hom-functor $\mathcal{D}(d, R-): \mathcal{C} \rightarrow \mathcal{S}$ et together with $L d \in \mathcal{C}$ form a universal property.
As usual specializing the naturality square ($f^{\sharp}: L d \rightarrow c$)

$$
\begin{aligned}
& \mathcal{C}(L d, L d) \stackrel{\alpha_{L d}}{\longleftrightarrow} \mathcal{D}(d, R L d)
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{C}(L d, c) \underset{\alpha_{c}}{\longleftrightarrow} \mathcal{D}(d, R c)
\end{aligned}
$$

and evaluating element-wise ($f^{b}=\alpha_{c} f^{\sharp}$)

we have the existence and uniqueness condition: for any $f^{b}: d \rightarrow$ $R c$ there exists a unique $f^{\sharp}: L d \rightarrow c$ such that $R f^{\sharp} \circ \eta_{d}=f^{b}$

Note that the map $\eta_{d}: d \rightarrow R L d$ is the adjoint of $\mathbf{1}_{L d}$.
Looking at the full diagram

November 16, 2023
we see that the identity diagram for $1_{L d}$ on the left induces commuting diagrams on the right, this can be made more precise in the following

Lemma 1.1. Consider the adjunction $L \dashv R$ and the diagrams

the diagram on the left commutes if and only if the diagram on the right commutes. ${ }^{2}$

Proof. The naturality square for fixed $c^{\prime} \in \mathcal{C}\left(h: d \rightarrow d^{\prime}\right)$ is

$$
\begin{gathered}
\mathcal{C}\left(L d^{\prime}, c^{\prime}\right) \xrightarrow{b} \mathcal{D}\left(d^{\prime}, R c^{\prime}\right) \\
\underset{-\circ L h}{\downarrow} \\
\mathcal{C}\left(L d, c^{\prime}\right) \xrightarrow[b]{ } \\
\\
\\
\quad\left(g^{\sharp} \circ L h\right)^{b}=g^{b} \circ h
\end{gathered}
$$

The naturality square for fixed $d \in \mathcal{D}\left(k: c \rightarrow c^{\prime}\right)$ is

$$
\begin{aligned}
& \mathcal{C}(L d, c) \xrightarrow{b} \mathcal{D}(d, R c) \\
& k \circ \downarrow \downarrow \text { } \downarrow k \circ- \\
& \mathcal{C}\left(L d, c^{\prime}\right) \longrightarrow \underset{b}{\longrightarrow} \mathcal{D}\left(d, R c^{\prime}\right) \\
& \left(k \circ f^{\sharp}\right)^{b}=R k \circ f^{b}
\end{aligned}
$$

Suppose the left diagram commutes

$$
g^{\sharp} \circ L h=k \circ f^{\sharp}
$$

substituting into naturality

[^1]$$
g^{b} \circ h=R k \circ f^{b}
$$
thus the right diagram also commutes (the converse is similar).

Proposition 1.1. The maps $\eta_{d}: d \rightarrow R L d$ form a natural transformation

$$
\eta: \mathbf{1}_{\mathcal{D}} \Rightarrow R \circ L
$$

of endofunctors $\mathcal{D} \rightarrow \mathcal{D}$.
Proof. The naturality square for $\eta\left(f: d \rightarrow d^{\prime}\right)$ is

using the previous lemma this diagram commutes iff the corresponding diagram in \mathcal{C}

commutes, which is clearly the case.

Definition 1.1. The natural transformation

$$
\eta: \mathbf{1}_{\mathcal{D}} \Rightarrow R \circ L
$$

is called the unit of the adjunction $L \dashv R$.

2 Universal Property \& the Counit

Taking the adjunction $L \dashv R$ and fixing $c \in \mathcal{C}$ we have the natural isomorphism between hom-functors

$$
\mathcal{C}(L-, c) \cong \mathcal{D}(-, R c)
$$

thus the hom-functor $\mathcal{C}(L-, c): \mathcal{D} \rightarrow \mathcal{S}$ et together with $R c \in \mathcal{D}$ form a universal property.
As usual specializing the naturality square ($f^{b}: d \rightarrow R c$)

and evaluating element-wise $\left(f^{\sharp}=\alpha_{c} f^{b}\right)$

we have the existence and uniqueness condition: for any $f^{\sharp}: L d \rightarrow$ c there exists a unique $f^{b}: d \rightarrow R c$ such that $f^{\sharp}=\epsilon_{c} \circ L f^{b}$

Note that the map $\epsilon_{c}: L R c \rightarrow c$ is the adjoint of $\mathbf{1}_{R c}$.
The full diagram is

November 16, 2023
Page 5 of 8

Proposition 2.1. The maps $\epsilon_{c}: c \rightarrow L R c$ form a natural transformation

$$
\epsilon: L \circ R \Rightarrow \mathbf{1}_{\mathcal{C}}
$$

of endofunctors $\mathcal{C} \rightarrow \mathcal{C}$.
Proof. The naturality square for $\epsilon\left(f: c \rightarrow c^{\prime}\right)$ is

using the previous lemma this diagram commutes iff the corresponding diagram in \mathcal{D}

commutes, which is clearly the case.

Definition 2.1. The natural transformation

$$
\epsilon: L \circ R \Rightarrow \mathbf{1}_{\mathcal{C}}
$$

is called the counit of the adjunction $L \dashv R$.

3 Alternative Definition

An alternative definition of the adjunction is
Definition 3.1. (Adjunction II) An adjunction $L \dashv R$ consists of a pair of functors $R: \mathcal{C} \rightarrow \mathcal{D}, L: \mathcal{D} \rightarrow \mathcal{C}$ together with two natural transformations

- $\eta: \mathbf{1}_{\mathcal{D}} \Rightarrow R \circ L$ (the unit)
- $\epsilon: L \circ R \Rightarrow 1_{\mathcal{C}}$ (the counit)
such that

commute in the functor category $[\mathcal{C}, \mathcal{D}]$.
Note that $R \circ L$ and $L \circ R$ are endo-functors, they are like containers.
The naturality square for unit ($f: x \rightarrow y$ in \mathcal{D}) is ${ }^{3}$

η_{x} picks a particular element inside $(R \circ L) x$.
The naturality square for counit ($f: x \rightarrow y$ in \mathcal{C}) is

ϵ_{x} extracts a particular element from $(L \circ R) x$.

[^2]Proposition 3.1. The two definitions of adjunction are equivalent.

Proof. Consider the isomorphism in the first definition and pick $c=L d$ then

$$
\mathcal{C}(L d, L d) \cong \mathcal{D}(d,(R \circ L) d)
$$

the identity $\mathbf{1}_{L d} \in \mathcal{C}(L d, L d)$ picks a mapping (the unit)

$$
\eta_{d}: d \rightarrow(R \circ L) d
$$

which can be seen to be the component of a natural transformation from the naturality of the isomorphism.
Taking $d=R c$ we get

$$
\mathcal{C}((L \circ R) c, c) \cong \mathcal{D}(R c, R c)
$$

the identity $\mathbf{1}_{R c}$ picks a mapping (the counit)

$$
\epsilon_{c}:(L \circ R) c \rightarrow c
$$

which is natural.
In the other direction take

- $\eta_{d}: d \rightarrow(R \circ L) d$
- $\epsilon_{c}:(L \circ R) c \rightarrow c$
and use R and L functors on morphisms.
[1] E. Riehl, Category Theory in Context (Dover, 2015).
[2] P. Perrone, Notes on Category Theory with Examples from Basic Mathematics, (2019).
[3] B. Milewski, Category Theory for Programmers (2019).
[4] S. M. Lane, Categories for the Working Mathematician (Springer New York, 1971).

[^0]: ${ }^{1}$ that is an isomorphism between the hom-sets that is also a natural transformation between hom-functors when varying both c and d

[^1]: ${ }^{2}$ the converse is also true: equivalence between commuting diagrams on both sides implies the naturelity of the bijections.

[^2]: ${ }^{3}$ note that $\mathbf{1}_{\mathcal{D}} x=x, \mathbf{1}_{\mathcal{D}} f=f$

