Definition 0.1. The covariant Yoneda embedding is the functor

that maps

- any object $c \in \mathcal{C}$ to the hom-functor $\mathcal{C}(-, c)$
- any morphism $f: c \rightarrow d$ to the natural transformation α : $\mathcal{C}(-, c) \Rightarrow \boldsymbol{\mathcal { C }}(-, d)$ with components

$$
\begin{gathered}
\alpha_{x}: \mathcal{C}(x, c) \rightarrow \mathcal{C}(x, d) \\
u \mapsto f \circ u
\end{gathered}
$$

The contravariant Yoneda embedding is the functor

that maps

- any object $c \in \mathcal{C}$ to the hom-functor $\mathcal{C}(c,-)$
- any morphism $f: c \rightarrow d$ to the natural transformation α : $\mathcal{C}(d,-) \Rightarrow \boldsymbol{\mathcal { C }}(c,-)$ with components

$$
\begin{aligned}
& \alpha_{x}: \mathcal{C}(d, x) \rightarrow \mathcal{C}(c, y) \\
& u \mapsto u \circ f
\end{aligned}
$$

Corollary 0.1. The Yoneda embeddings are full and faithful.

Proof. Consider the contravariant Yoneda embedding¹. Yoneda lemma in the special case $F=\mathcal{C}(d,-)$ is

$$
[\mathcal{C}, \mathcal{S e t}](\mathcal{C}(c,-), \mathcal{C}(d,-)) \cong \mathcal{C}(d, c)
$$

(for any $c, d \in \mathcal{C}$) it means that the hom-sets in the two categories $\mathcal{C}^{o p}$ and $[\mathcal{C}, \mathcal{S e t}]$ are isomorphic thus the functor is full and faithful.

Corollary 0.2. For any $a, b \in \mathcal{C}$ we have that $a \cong b$ iff $\mathcal{C}(a,-) \cong$ $\mathcal{C}(b,-)(\mathcal{C}(-, a) \cong \mathcal{C}(-, b))$.
In particular if $a, b \in \mathcal{C}$ represent the same functor then $a \cong b$.
Proof. Using Yoneda lemma we have

$$
\begin{aligned}
& {[\mathcal{C}, \mathcal{S e t}](\mathcal{C}(a,-), \mathcal{C}(b,-)) \cong \mathcal{C}(b, a)} \\
& {[\mathcal{C}, \mathcal{S e t}](\mathcal{C}(b,-), \mathcal{C}(a,-)) \cong \mathcal{C}(a, b)}
\end{aligned}
$$

thus

$$
\begin{aligned}
a \cong b & \Longleftrightarrow \mathcal{C}(a, b) \cong \mathcal{C}(b, a) \\
& \Longleftrightarrow[\mathcal{C}, \mathcal{S e t}](\mathcal{C}(a,-), \mathcal{C}(b,-)) \cong[\mathcal{C}, \mathcal{S e t}](\mathcal{C}(b,-), \mathcal{C}(a,-)) \\
& \Longleftrightarrow \mathcal{C}(a,-) \cong \mathcal{C}(b,-)
\end{aligned}
$$

The intuition is that each object $a \in \mathcal{C}$ is uniquely specified by the morphisms emanating from it (or impinging into it).
See [1] Ch.2.2, [2] Ch.2.1.3, [3] Ch.18.
See also

- Category Theory II 5.1: Yoneda Embedding - YouTube
- The Yoneda Embedding
[1] E. Riehl, Category Theory in Context (Dover, 2015).
[2] P. Perrone, Notes on Category Theory with Examples from Basic Mathematics, (2019).
[3] B. Milewski, Category Theory for Programmers (2019).

[^0]
[^0]: ${ }^{1}$ the covariant case is analogous

