How is information about an object $c \in C$ encoded in morphisms emanating from c (or inpinging into c)?

- 1. consider the set C(c, x) of morphisms emanating from c we keep c fixed and vary x so we want a *function* C(c, -)
- 2. we are really interested in how the sets $\mathcal{C}(c, -)$ transform under a morphism $f : x \to y$ ($\mathcal{C}(c, x) \to \mathcal{C}(c, y)$) so we need to consider also $\mathcal{C}(c, f)$
- 3. in the end we need a functor

(similarly for impinging morphisms $\mathcal{C}(-,c)$)

Definition 0.1. Given a locally small category C for any object $c \in C$ the covariant and contravariant **hom-functors**¹ are defined as

- $\mathcal{C}(c,-)$ maps any object $x \in \mathcal{C}$ to the hom-set $\mathcal{C}(c,x)$
- $\mathcal{C}(c,-)$ maps any morphism $f: x \to y$ by pre-composition $\mathcal{C}(c,f)g = f \circ g$

- $\mathcal{C}(-,c)$ maps any object $x \in \mathcal{C}$ to the hom-set $\mathcal{C}(x,c)$
- $\mathcal{C}(-,c)$ maps any morphism $f: x \to y$ by post-composition $\mathcal{C}(f,c)g = g \circ f$

¹they are also known as **functors represented by c**

November 16, 2023

Note that hom-functors are <u>uniquely determined</u> by c. See [1] Ch.1.1, [2] Ch.2.1.1.

[1] E. Riehl, *Category Theory in Context* (Dover, 2015).[2] P. Perrone, *Notes on Category Theory with Examples from Basic Mathematics*, (2019).