We will use universal construction to build a function object (an exponential). We consider a category \mathcal{C} that has products

1. we have an object b^{a} that represents a function $a \rightarrow b$, it is evaluated on an argument a and produces a result b, the pattern is

$$
b^{a} \times a \xrightarrow{\epsilon} b
$$

2. suppose we have different candidates for b^{a}, we want to rank them
3. we take the best one, the one that has a unique morphism from any other candidate
this leads to
Definition 0.1. Let \mathcal{C} have products, the exponential of $a, b \in \mathcal{C}$ is

- an object $b^{a} \in \mathcal{C}$
- a morphism eval : $b^{a} \times a \rightarrow b$ (evaluation)
such that for any $z \in \mathcal{C}$ and $g: z \times a \rightarrow b$ there exists a unique morphism $h: z \rightarrow b^{a}$ such that

commutes: $g=$ eval $\circ\left(h \times \mathbf{1}_{a}\right)$.
The exponential notation comes from considering functions between finite sets. The total number of function $A \rightarrow B$ is

$$
\left|B^{A}\right|=|B|^{|A|}
$$

In the exponential diagram we can see that g (a function of two arguments) is equivalent to b^{a} (a function of one argument) through h that takes an argument and returns a function.
This is called Currying
November 16, 2023
Page 1 of 2

Example 0.1. In Haskell these two are equivalent ${ }^{11}$
$h:: z->(a->b)$
$g:(z, a)$-> b
and we can curry/uncurry with

```
curry :: ((a,b) -> c) -> (a -> (b -> c))
curry f = \lambdax -> (\lambday -> f (x,y))
uncurry :: (a -> (b -> c)) -> ((a,b) -> c)
uncurry f = \lambda(x,y) -> ((f x) y)
```

Definition 0.2. A category that has products and exponentials for every pair of objects and a terminal object is a cartesian closed category (CCC).

Definition 0.3. A category that has products, coproducts and exponentials for every pair of objects and initial and terminal objects is a bicartesian closed category (BCCC).

See [1] Ch. 9 and also Category Theory 8.1: Function objects, exponentials - YouTube.
[1] B. Milewski, Category Theory for Programmers (2019).

[^0]
[^0]: ${ }^{1}$ note that arrows in Haskell associate to the right so parentheses are really not required

