We will use universal construction to build a *function object* (an **exponential**). We consider a category C that has products

1. we have an object b^a that represents a function $a \rightarrow b$, it is *evaluated* on an *argument* a and produces a *result* b, the <u>pattern</u> is

 $b^a \times a \xrightarrow{\epsilon} b$

- 2. suppose we have different candidates for b^a , we want to rank them
- 3. we take the <u>best</u> one, the one that has a unique morphism from any other candidate

this leads to

Definition 0.1. Let C have products, the **exponential** of $a, b \in C$ is

- an object $b^a \in \mathcal{C}$
- a morphism eval : $b^a \times a \rightarrow b$ (evaluation)

such that for any $z \in C$ and $g : z \times a \to b$ there exists a unique morphism $h : z \to b^a$ such that

commutes: $g = \text{eval} \circ (h \times \mathbf{1}_a)$.

The exponential notation comes from considering functions between finite sets. The total number of function $A \rightarrow B$ is

$$|B^A| = |B|^{|A|}$$

In the exponential diagram we can see that g (a function of <u>two</u> arguments) is equivalent to b^a (a function of <u>one</u> argument) through h that takes an argument and returns a function.

This is called **Currying**

November 16, 2023

Page 1 of 2

Example 0.1. In Haskell these two are equivalent¹

h :: z -> (a -> b) g :: (z,a) -> b and we can curry/uncurry with

curry :: ((a,b) -> c) -> (a -> (b -> c)) curry f = λx -> (λy -> f (x,y))

```
uncurry :: (a -> (b -> c)) -> ((a,b) -> c)
uncurry f = \lambda(x,y) -> ((f x) y)
```

Definition 0.2. A category that has products and exponentials for every pair of objects and a terminal object is a **cartesian closed category** (CCC).

Definition 0.3. A category that has products, coproducts and exponentials for every pair of objects and initial and terminal objects is a **bicartesian closed category** (BCCC).

See [1] Ch.9 and also Category Theory 8.1: Function objects, exponentials - YouTube.

[1] B. Milewski, Category Theory for Programmers (2019).

November 16, 2023

 $^{^{1}\}mbox{note}$ that arrows in Haskell associate to the right so parentheses are really not required