Definition 0.1. Given a group *G* consider the functor

$$F: \mathcal{B}G \to \mathcal{C}$$

with

- $F \bullet = X$ where X is a fixed object $X \in \mathcal{C}$
- for any $f \in G$ an endomorphism $f_* : X \to X$ ($Ff = f_*$)

such that

- $h_{\star}g_{\star} = (hg)_{\star}$ for all $h, g \in G$
- $e_{\star} = \mathbf{1}_X$ where $e \in G$ is the group identity

thus *F* defines a **left action**¹ of the group *G* on the object $X \in \mathcal{C}$. Also

when ${\cal C}$ is	X is called
$\mathcal{S}et$	G- set
$\mathcal{V}ect_{\mathbb{K}}$	G- representation
auop	G- space

Corollary 0.1. When a group G acts functorially on an object $X \in C$ its elements g act by **automorphism** $g_* : X \to X$ (moreover $(g_*)^{-1} = (g_*^{-1})$).

Proof. Any element $g \in G$ regarded as a morphism of $\mathcal{B}G$ is an *isomorphism* thus functoriality guarantees that g_{\star} is an isomorphism as well. So for example for the action $\mathcal{B}G \to \mathcal{V}ect_{\mathbb{K}}$ on a vector space the linear map $g_{\star} : V \to V$ must be an *automorphism* of the vector space V.

See [1] Ch.1.3.

[1] E. Riehl, Category Theory in Context (Dover, 2015).

November 16, 2023

¹a **right action** is a functor $\mathcal{B}G^{op} \to \mathcal{C}$ and the requirement for the endomorphism is $g^*h^* = (hg)^*$