Products and coproducts of two objects in a category are defined by universal construction

Definition 0.1. In a category C a **product** of two objects $a, b \in C$ consists in

- an object $a \times b \in \mathcal{C}$
- two morphisms $p_1 : a \times b \to a$ and $p_2 : a \times b \to b$ (the **projections**)

such that for any object c and morphisms $\pi_1 : c \to a, \pi_2 : c \to b$ there exists a unique morphism $\langle \pi_1, \pi_2 \rangle : c \to a \times b$ such that

commutes.

The unique morphism $\langle \pi_1, \pi_2 \rangle$ takes all the *ugly and flawed* parts of the candidate product and allows the *nice and clean* projections to do their job.

Definition 0.2. In a category C a **coproduct** of two objects $a, b \in C$ consists in

- an object $a + b \in \mathcal{C}$
- two morphisms $i_1 : a \to a + b$ and $i_2 : b \to a + b$ (the **injections**)

such that for any object *c* and morphisms $\iota_1 : a \to c, \iota_2 : b \to c$ there exists a unique morphism $[\iota_1, \iota_2] : a + b \to c$ such that

November 16, 2023

Page 1 of 2

commutes.

Definition 0.3. A **cartesian** (**cocartesian**) category has products (coproducts) for every pair of objects.

Example 0.1. In Set

- the product is the cartesian product $A \times B$
- the coproduct is the disjoint union $A \sqcup B$

Example 0.2. In Hask

• the product is (a, b) the two projections are

fst :: (a,b) -> a
fst (x,_) = x
snd :: (a,b) -> b
snd (_,y) = y

• the coproduct is

```
data Either a b = Left a
| Right b
```

Left and Right corresponds to the two injections

See [1] Ch.5 and also

- Category Theory 4.2: Products YouTube
- Category Theory 5.1: Coproducts, sum types YouTube

[1] B. Milewski, Category Theory for Programmers (2019).