Consider the functor category $[\mathcal{C}, \mathcal{S}et]$, hom-functors $\mathcal{C}(c, -)$ are objects in $[\mathcal{C}, \mathcal{S}et]$ (for every $c \in \mathcal{C}$) and there are many other functors *naturally isomorphic to them*, these are called **representable** that is they are represented by *one* objects in \mathcal{C} that uniquely determines them.

Definition 0.1. Given a locally small¹ category C a covariant (contravariant) functor $F : C \to Set$ is **representable** iff there exist

- an object $c \in \mathcal{C}$
- a natural isomorphism $F \cong \mathcal{C}(c, -)$ ($F \cong \mathcal{C}(-, c)$)

and we say that

- *F* is **represented by c**
- $c \in \mathcal{C}$ and $F \cong \mathcal{C}(c, -)$ ($F \cong \mathcal{C}(-, c)$) are a **representation** of F

The natural isomorphism $F \cong \mathcal{C}(c, -)$ is

See [1] Ch.2.1, [2] Ch.2.1.2, [3] Ch.14. Here are some examples.

See also

• Category Theory II 4.1: Representable Functors - YouTube

November 16, 2023

¹ in this way the hom-functors are valued in $\mathcal{S}et$

[1] E. Riehl, *Category Theory in Context* (Dover, 2015).

[2] P. Perrone, Notes on Category Theory with Examples from Basic Mathematics, (2019).

[3] B. Milewski, Category Theory for Programmers (2019).