Initial and terminal objects in a category are defined by universal construction

Definition 0.1. In a category C:

- an object \emptyset is called **initial** if for any object X in \mathcal{C} there is a unique arrow $\emptyset \to X$
- an object 1 is called **terminal** if for any object X in \mathcal{C} there is a unique arrow $X \to 1$

They are *dual* definitions: if A is initial in C then \overline{A} is terminal in C^{op} and vice-versa.

Theorem 0.1. The initial and terminal objects are unique up to isomorphism.

Definition 0.2. If 1 is terminal in \mathcal{C} we call arrows $1 \to X$ elements¹ of X

Here we have changed our point ov view: we turn the internal structure of an object into its external relationship with other objects

It is as if morphisms connects to hidden features *inside* objects. They *reveal* the inner structure of objects.

(see the discussion in representable functors)

Example 0.1. In Set

- the initial object is the empty set \emptyset
- the terminal object is the singleton {*}

Example 0.2. *In the category* \mathcal{P} *from a poset* (P, \leq)

- the initial object is the minimum
- the terminal object is the maximum

 $^1 \text{or}$ constant of type X

November 16, 2023

Page 1 of 2

Example 0.3. In \mathcal{H} *ask the initial object is the empty type Void and the unique arrow to any other type is the function*

absurd :: Void -> a

The terminal object is the singleton type Unit and the unique arrow from any type is

unit :: a -> Unit unit _ = ()

See [1] Ch.5.1 and also Category Theory 4.1: Terminal and initial objects - YouTube.

[1] B. Milewski, *Category Theory for Programmers* (2019).